If it's not what You are looking for type in the equation solver your own equation and let us solve it.
p^2+18p+2=0
a = 1; b = 18; c = +2;
Δ = b2-4ac
Δ = 182-4·1·2
Δ = 316
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{316}=\sqrt{4*79}=\sqrt{4}*\sqrt{79}=2\sqrt{79}$$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(18)-2\sqrt{79}}{2*1}=\frac{-18-2\sqrt{79}}{2} $$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(18)+2\sqrt{79}}{2*1}=\frac{-18+2\sqrt{79}}{2} $
| 1=m^2-1 | | 6x^2-x-1/2x^2-3x-5=0 | | 1/2x-4+1=-3-2x | | 10x=4x+7 | | 3(3x-4)=21 | | -5.1-2x=-0.1 | | 20j+1j=7 | | 5/6m=2-11/2m | | 1x=5x+18 | | -9x+11=20 | | 5x+23=2x-8 | | (2x-61)+(x-17)+(3x)=360 | | .−18=6t | | 84=-6(2+2a) | | x=4x^2-20x+24 | | x^2-3x+9=1 | | X/5+x/6=5/30 | | x-5/3-3=x-1/2 | | -15n+5=-14n-1 | | -8y+3(y+5)=-10 | | 3=2q-5 | | d/4=23/4 | | 7x/24-3=x/6+6 | | .64=x/1200 | | -34-(-23)=x/10 | | .64=x/1000 | | 2e-16=8-4e | | Y^.5=4x | | 1+7x+3-3=1+4x | | 5(2c-1)-5=7c+8 | | 8-1/5x=10 | | 16+b=6b-24 |